3.48 \(\int \frac {d+e x+f x^2}{(1+x^2+x^4)^3} \, dx\)

Optimal. Leaf size=223 \[ -\frac {1}{32} (9 d-4 f) \log \left (x^2-x+1\right )+\frac {1}{32} (9 d-4 f) \log \left (x^2+x+1\right )+\frac {x \left (-7 x^2 (d-f)+2 d+3 f\right )}{24 \left (x^4+x^2+1\right )}+\frac {x \left (-\left (x^2 (d-2 f)\right )+d+f\right )}{12 \left (x^4+x^2+1\right )^2}-\frac {(13 d+2 f) \tan ^{-1}\left (\frac {1-2 x}{\sqrt {3}}\right )}{48 \sqrt {3}}+\frac {(13 d+2 f) \tan ^{-1}\left (\frac {2 x+1}{\sqrt {3}}\right )}{48 \sqrt {3}}+\frac {2 e \tan ^{-1}\left (\frac {2 x^2+1}{\sqrt {3}}\right )}{3 \sqrt {3}}+\frac {e \left (2 x^2+1\right )}{6 \left (x^4+x^2+1\right )}+\frac {e \left (2 x^2+1\right )}{12 \left (x^4+x^2+1\right )^2} \]

[Out]

1/12*e*(2*x^2+1)/(x^4+x^2+1)^2+1/12*x*(d+f-(d-2*f)*x^2)/(x^4+x^2+1)^2+1/6*e*(2*x^2+1)/(x^4+x^2+1)+1/24*x*(2*d+
3*f-7*(d-f)*x^2)/(x^4+x^2+1)-1/32*(9*d-4*f)*ln(x^2-x+1)+1/32*(9*d-4*f)*ln(x^2+x+1)-1/144*(13*d+2*f)*arctan(1/3
*(1-2*x)*3^(1/2))*3^(1/2)+1/144*(13*d+2*f)*arctan(1/3*(1+2*x)*3^(1/2))*3^(1/2)+2/9*e*arctan(1/3*(2*x^2+1)*3^(1
/2))*3^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 223, normalized size of antiderivative = 1.00, number of steps used = 18, number of rules used = 10, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.476, Rules used = {1673, 1178, 1169, 634, 618, 204, 628, 12, 1107, 614} \[ \frac {x \left (-7 x^2 (d-f)+2 d+3 f\right )}{24 \left (x^4+x^2+1\right )}+\frac {x \left (x^2 (-(d-2 f))+d+f\right )}{12 \left (x^4+x^2+1\right )^2}-\frac {1}{32} (9 d-4 f) \log \left (x^2-x+1\right )+\frac {1}{32} (9 d-4 f) \log \left (x^2+x+1\right )-\frac {(13 d+2 f) \tan ^{-1}\left (\frac {1-2 x}{\sqrt {3}}\right )}{48 \sqrt {3}}+\frac {(13 d+2 f) \tan ^{-1}\left (\frac {2 x+1}{\sqrt {3}}\right )}{48 \sqrt {3}}+\frac {e \left (2 x^2+1\right )}{6 \left (x^4+x^2+1\right )}+\frac {e \left (2 x^2+1\right )}{12 \left (x^4+x^2+1\right )^2}+\frac {2 e \tan ^{-1}\left (\frac {2 x^2+1}{\sqrt {3}}\right )}{3 \sqrt {3}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x + f*x^2)/(1 + x^2 + x^4)^3,x]

[Out]

(e*(1 + 2*x^2))/(12*(1 + x^2 + x^4)^2) + (x*(d + f - (d - 2*f)*x^2))/(12*(1 + x^2 + x^4)^2) + (e*(1 + 2*x^2))/
(6*(1 + x^2 + x^4)) + (x*(2*d + 3*f - 7*(d - f)*x^2))/(24*(1 + x^2 + x^4)) - ((13*d + 2*f)*ArcTan[(1 - 2*x)/Sq
rt[3]])/(48*Sqrt[3]) + ((13*d + 2*f)*ArcTan[(1 + 2*x)/Sqrt[3]])/(48*Sqrt[3]) + (2*e*ArcTan[(1 + 2*x^2)/Sqrt[3]
])/(3*Sqrt[3]) - ((9*d - 4*f)*Log[1 - x + x^2])/32 + ((9*d - 4*f)*Log[1 + x + x^2])/32

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 614

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^(p + 1))/((p +
1)*(b^2 - 4*a*c)), x] - Dist[(2*c*(2*p + 3))/((p + 1)*(b^2 - 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2] && IntegerQ[4*p]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 1107

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 1169

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r =
Rt[2*q - b/c, 2]}, Dist[1/(2*c*q*r), Int[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(
d*r + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]

Rule 1178

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*a*(p + 1)*(b^2 - 4*a*c)), x] + Dist[1/(2*a*(p + 1)
*(b^2 - 4*a*c)), Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a +
 b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[p, -1] && IntegerQ[2*p]

Rule 1673

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2]

Rubi steps

\begin {align*} \int \frac {d+e x+f x^2}{\left (1+x^2+x^4\right )^3} \, dx &=\int \frac {e x}{\left (1+x^2+x^4\right )^3} \, dx+\int \frac {d+f x^2}{\left (1+x^2+x^4\right )^3} \, dx\\ &=\frac {x \left (d+f-(d-2 f) x^2\right )}{12 \left (1+x^2+x^4\right )^2}+\frac {1}{12} \int \frac {11 d-f-5 (d-2 f) x^2}{\left (1+x^2+x^4\right )^2} \, dx+e \int \frac {x}{\left (1+x^2+x^4\right )^3} \, dx\\ &=\frac {x \left (d+f-(d-2 f) x^2\right )}{12 \left (1+x^2+x^4\right )^2}+\frac {x \left (2 d+3 f-7 (d-f) x^2\right )}{24 \left (1+x^2+x^4\right )}+\frac {1}{72} \int \frac {15 (4 d-f)-21 (d-f) x^2}{1+x^2+x^4} \, dx+\frac {1}{2} e \operatorname {Subst}\left (\int \frac {1}{\left (1+x+x^2\right )^3} \, dx,x,x^2\right )\\ &=\frac {e \left (1+2 x^2\right )}{12 \left (1+x^2+x^4\right )^2}+\frac {x \left (d+f-(d-2 f) x^2\right )}{12 \left (1+x^2+x^4\right )^2}+\frac {x \left (2 d+3 f-7 (d-f) x^2\right )}{24 \left (1+x^2+x^4\right )}+\frac {1}{144} \int \frac {15 (4 d-f)-(21 (d-f)+15 (4 d-f)) x}{1-x+x^2} \, dx+\frac {1}{144} \int \frac {15 (4 d-f)+(21 (d-f)+15 (4 d-f)) x}{1+x+x^2} \, dx+\frac {1}{2} e \operatorname {Subst}\left (\int \frac {1}{\left (1+x+x^2\right )^2} \, dx,x,x^2\right )\\ &=\frac {e \left (1+2 x^2\right )}{12 \left (1+x^2+x^4\right )^2}+\frac {x \left (d+f-(d-2 f) x^2\right )}{12 \left (1+x^2+x^4\right )^2}+\frac {e \left (1+2 x^2\right )}{6 \left (1+x^2+x^4\right )}+\frac {x \left (2 d+3 f-7 (d-f) x^2\right )}{24 \left (1+x^2+x^4\right )}+\frac {1}{3} e \operatorname {Subst}\left (\int \frac {1}{1+x+x^2} \, dx,x,x^2\right )+\frac {1}{32} (9 d-4 f) \int \frac {1+2 x}{1+x+x^2} \, dx+\frac {1}{96} (13 d+2 f) \int \frac {1}{1-x+x^2} \, dx+\frac {1}{96} (13 d+2 f) \int \frac {1}{1+x+x^2} \, dx+\frac {1}{32} (-9 d+4 f) \int \frac {-1+2 x}{1-x+x^2} \, dx\\ &=\frac {e \left (1+2 x^2\right )}{12 \left (1+x^2+x^4\right )^2}+\frac {x \left (d+f-(d-2 f) x^2\right )}{12 \left (1+x^2+x^4\right )^2}+\frac {e \left (1+2 x^2\right )}{6 \left (1+x^2+x^4\right )}+\frac {x \left (2 d+3 f-7 (d-f) x^2\right )}{24 \left (1+x^2+x^4\right )}-\frac {1}{32} (9 d-4 f) \log \left (1-x+x^2\right )+\frac {1}{32} (9 d-4 f) \log \left (1+x+x^2\right )-\frac {1}{3} (2 e) \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x^2\right )+\frac {1}{48} (-13 d-2 f) \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,-1+2 x\right )+\frac {1}{48} (-13 d-2 f) \operatorname {Subst}\left (\int \frac {1}{-3-x^2} \, dx,x,1+2 x\right )\\ &=\frac {e \left (1+2 x^2\right )}{12 \left (1+x^2+x^4\right )^2}+\frac {x \left (d+f-(d-2 f) x^2\right )}{12 \left (1+x^2+x^4\right )^2}+\frac {e \left (1+2 x^2\right )}{6 \left (1+x^2+x^4\right )}+\frac {x \left (2 d+3 f-7 (d-f) x^2\right )}{24 \left (1+x^2+x^4\right )}-\frac {(13 d+2 f) \tan ^{-1}\left (\frac {1-2 x}{\sqrt {3}}\right )}{48 \sqrt {3}}+\frac {(13 d+2 f) \tan ^{-1}\left (\frac {1+2 x}{\sqrt {3}}\right )}{48 \sqrt {3}}+\frac {2 e \tan ^{-1}\left (\frac {1+2 x^2}{\sqrt {3}}\right )}{3 \sqrt {3}}-\frac {1}{32} (9 d-4 f) \log \left (1-x+x^2\right )+\frac {1}{32} (9 d-4 f) \log \left (1+x+x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.59, size = 235, normalized size = 1.05 \[ \frac {1}{144} \left (\frac {12 \left (x \left (-d x^2+d+2 f x^2+f\right )+2 e x^2+e\right )}{\left (x^4+x^2+1\right )^2}+\frac {6 \left (-7 d x^3+2 d x+e \left (8 x^2+4\right )+7 f x^3+3 f x\right )}{x^4+x^2+1}-\frac {\left (\left (7 \sqrt {3}-47 i\right ) d+\left (-7 \sqrt {3}+17 i\right ) f\right ) \tan ^{-1}\left (\frac {1}{2} \left (\sqrt {3}-i\right ) x\right )}{\sqrt {\frac {1}{6} \left (1+i \sqrt {3}\right )}}-\frac {\left (\left (7 \sqrt {3}+47 i\right ) d-\left (7 \sqrt {3}+17 i\right ) f\right ) \tan ^{-1}\left (\frac {1}{2} \left (\sqrt {3}+i\right ) x\right )}{\sqrt {\frac {1}{6} \left (1-i \sqrt {3}\right )}}-32 \sqrt {3} e \tan ^{-1}\left (\frac {\sqrt {3}}{2 x^2+1}\right )\right ) \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(d + e*x + f*x^2)/(1 + x^2 + x^4)^3,x]

[Out]

((6*(2*d*x + 3*f*x - 7*d*x^3 + 7*f*x^3 + e*(4 + 8*x^2)))/(1 + x^2 + x^4) + (12*(e + 2*e*x^2 + x*(d + f - d*x^2
 + 2*f*x^2)))/(1 + x^2 + x^4)^2 - (((-47*I + 7*Sqrt[3])*d + (17*I - 7*Sqrt[3])*f)*ArcTan[((-I + Sqrt[3])*x)/2]
)/Sqrt[(1 + I*Sqrt[3])/6] - (((47*I + 7*Sqrt[3])*d - (17*I + 7*Sqrt[3])*f)*ArcTan[((I + Sqrt[3])*x)/2])/Sqrt[(
1 - I*Sqrt[3])/6] - 32*Sqrt[3]*e*ArcTan[Sqrt[3]/(1 + 2*x^2)])/144

________________________________________________________________________________________

fricas [A]  time = 0.89, size = 384, normalized size = 1.72 \[ -\frac {84 \, {\left (d - f\right )} x^{7} - 96 \, e x^{6} + 60 \, {\left (d - 2 \, f\right )} x^{5} - 144 \, e x^{4} + 84 \, {\left (d - 2 \, f\right )} x^{3} - 192 \, e x^{2} - 2 \, \sqrt {3} {\left ({\left (13 \, d - 32 \, e + 2 \, f\right )} x^{8} + 2 \, {\left (13 \, d - 32 \, e + 2 \, f\right )} x^{6} + 3 \, {\left (13 \, d - 32 \, e + 2 \, f\right )} x^{4} + 2 \, {\left (13 \, d - 32 \, e + 2 \, f\right )} x^{2} + 13 \, d - 32 \, e + 2 \, f\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) - 2 \, \sqrt {3} {\left ({\left (13 \, d + 32 \, e + 2 \, f\right )} x^{8} + 2 \, {\left (13 \, d + 32 \, e + 2 \, f\right )} x^{6} + 3 \, {\left (13 \, d + 32 \, e + 2 \, f\right )} x^{4} + 2 \, {\left (13 \, d + 32 \, e + 2 \, f\right )} x^{2} + 13 \, d + 32 \, e + 2 \, f\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) - 12 \, {\left (4 \, d + 5 \, f\right )} x - 9 \, {\left ({\left (9 \, d - 4 \, f\right )} x^{8} + 2 \, {\left (9 \, d - 4 \, f\right )} x^{6} + 3 \, {\left (9 \, d - 4 \, f\right )} x^{4} + 2 \, {\left (9 \, d - 4 \, f\right )} x^{2} + 9 \, d - 4 \, f\right )} \log \left (x^{2} + x + 1\right ) + 9 \, {\left ({\left (9 \, d - 4 \, f\right )} x^{8} + 2 \, {\left (9 \, d - 4 \, f\right )} x^{6} + 3 \, {\left (9 \, d - 4 \, f\right )} x^{4} + 2 \, {\left (9 \, d - 4 \, f\right )} x^{2} + 9 \, d - 4 \, f\right )} \log \left (x^{2} - x + 1\right ) - 72 \, e}{288 \, {\left (x^{8} + 2 \, x^{6} + 3 \, x^{4} + 2 \, x^{2} + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e*x+d)/(x^4+x^2+1)^3,x, algorithm="fricas")

[Out]

-1/288*(84*(d - f)*x^7 - 96*e*x^6 + 60*(d - 2*f)*x^5 - 144*e*x^4 + 84*(d - 2*f)*x^3 - 192*e*x^2 - 2*sqrt(3)*((
13*d - 32*e + 2*f)*x^8 + 2*(13*d - 32*e + 2*f)*x^6 + 3*(13*d - 32*e + 2*f)*x^4 + 2*(13*d - 32*e + 2*f)*x^2 + 1
3*d - 32*e + 2*f)*arctan(1/3*sqrt(3)*(2*x + 1)) - 2*sqrt(3)*((13*d + 32*e + 2*f)*x^8 + 2*(13*d + 32*e + 2*f)*x
^6 + 3*(13*d + 32*e + 2*f)*x^4 + 2*(13*d + 32*e + 2*f)*x^2 + 13*d + 32*e + 2*f)*arctan(1/3*sqrt(3)*(2*x - 1))
- 12*(4*d + 5*f)*x - 9*((9*d - 4*f)*x^8 + 2*(9*d - 4*f)*x^6 + 3*(9*d - 4*f)*x^4 + 2*(9*d - 4*f)*x^2 + 9*d - 4*
f)*log(x^2 + x + 1) + 9*((9*d - 4*f)*x^8 + 2*(9*d - 4*f)*x^6 + 3*(9*d - 4*f)*x^4 + 2*(9*d - 4*f)*x^2 + 9*d - 4
*f)*log(x^2 - x + 1) - 72*e)/(x^8 + 2*x^6 + 3*x^4 + 2*x^2 + 1)

________________________________________________________________________________________

giac [A]  time = 0.37, size = 171, normalized size = 0.77 \[ \frac {1}{144} \, \sqrt {3} {\left (13 \, d + 2 \, f - 32 \, e\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) + \frac {1}{144} \, \sqrt {3} {\left (13 \, d + 2 \, f + 32 \, e\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + \frac {1}{32} \, {\left (9 \, d - 4 \, f\right )} \log \left (x^{2} + x + 1\right ) - \frac {1}{32} \, {\left (9 \, d - 4 \, f\right )} \log \left (x^{2} - x + 1\right ) - \frac {7 \, d x^{7} - 7 \, f x^{7} - 8 \, x^{6} e + 5 \, d x^{5} - 10 \, f x^{5} - 12 \, x^{4} e + 7 \, d x^{3} - 14 \, f x^{3} - 16 \, x^{2} e - 4 \, d x - 5 \, f x - 6 \, e}{24 \, {\left (x^{4} + x^{2} + 1\right )}^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e*x+d)/(x^4+x^2+1)^3,x, algorithm="giac")

[Out]

1/144*sqrt(3)*(13*d + 2*f - 32*e)*arctan(1/3*sqrt(3)*(2*x + 1)) + 1/144*sqrt(3)*(13*d + 2*f + 32*e)*arctan(1/3
*sqrt(3)*(2*x - 1)) + 1/32*(9*d - 4*f)*log(x^2 + x + 1) - 1/32*(9*d - 4*f)*log(x^2 - x + 1) - 1/24*(7*d*x^7 -
7*f*x^7 - 8*x^6*e + 5*d*x^5 - 10*f*x^5 - 12*x^4*e + 7*d*x^3 - 14*f*x^3 - 16*x^2*e - 4*d*x - 5*f*x - 6*e)/(x^4
+ x^2 + 1)^2

________________________________________________________________________________________

maple [A]  time = 0.02, size = 264, normalized size = 1.18 \[ \frac {13 \sqrt {3}\, d \arctan \left (\frac {\left (2 x +1\right ) \sqrt {3}}{3}\right )}{144}+\frac {13 \sqrt {3}\, d \arctan \left (\frac {\left (2 x -1\right ) \sqrt {3}}{3}\right )}{144}-\frac {9 d \ln \left (x^{2}-x +1\right )}{32}+\frac {9 d \ln \left (x^{2}+x +1\right )}{32}-\frac {2 \sqrt {3}\, e \arctan \left (\frac {\left (2 x +1\right ) \sqrt {3}}{3}\right )}{9}+\frac {2 \sqrt {3}\, e \arctan \left (\frac {\left (2 x -1\right ) \sqrt {3}}{3}\right )}{9}+\frac {\sqrt {3}\, f \arctan \left (\frac {\left (2 x +1\right ) \sqrt {3}}{3}\right )}{72}+\frac {\sqrt {3}\, f \arctan \left (\frac {\left (2 x -1\right ) \sqrt {3}}{3}\right )}{72}+\frac {f \ln \left (x^{2}-x +1\right )}{8}-\frac {f \ln \left (x^{2}+x +1\right )}{8}+\frac {\left (-\frac {7 d}{3}-\frac {4 e}{3}+\frac {7 f}{3}\right ) x^{3}+\left (-6 d +4 f \right ) x^{2}-4 d +2 e +\frac {4 f}{3}+\left (-\frac {20 d}{3}+\frac {e}{3}+\frac {13 f}{3}\right ) x}{16 \left (x^{2}+x +1\right )^{2}}-\frac {\left (\frac {7 d}{3}-\frac {4 e}{3}-\frac {7 f}{3}\right ) x^{3}+\left (-6 d +4 f \right ) x^{2}-4 d -2 e +\frac {4 f}{3}+\left (\frac {20 d}{3}+\frac {e}{3}-\frac {13 f}{3}\right ) x}{16 \left (x^{2}-x +1\right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^2+e*x+d)/(x^4+x^2+1)^3,x)

[Out]

1/16*((-7/3*d+7/3*f-4/3*e)*x^3+(-6*d+4*f)*x^2+(-20/3*d+13/3*f+1/3*e)*x-4*d+4/3*f+2*e)/(x^2+x+1)^2+9/32*d*ln(x^
2+x+1)-1/8*f*ln(x^2+x+1)+13/144*3^(1/2)*d*arctan(1/3*(2*x+1)*3^(1/2))-2/9*3^(1/2)*e*arctan(1/3*(2*x+1)*3^(1/2)
)+1/72*3^(1/2)*f*arctan(1/3*(2*x+1)*3^(1/2))-1/16*((7/3*d-7/3*f-4/3*e)*x^3+(-6*d+4*f)*x^2+(20/3*d-13/3*f+1/3*e
)*x-4*d+4/3*f-2*e)/(x^2-x+1)^2-9/32*d*ln(x^2-x+1)+1/8*f*ln(x^2-x+1)+13/144*3^(1/2)*d*arctan(1/3*(2*x-1)*3^(1/2
))+2/9*3^(1/2)*e*arctan(1/3*(2*x-1)*3^(1/2))+1/72*3^(1/2)*f*arctan(1/3*(2*x-1)*3^(1/2))

________________________________________________________________________________________

maxima [A]  time = 2.57, size = 173, normalized size = 0.78 \[ \frac {1}{144} \, \sqrt {3} {\left (13 \, d - 32 \, e + 2 \, f\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x + 1\right )}\right ) + \frac {1}{144} \, \sqrt {3} {\left (13 \, d + 32 \, e + 2 \, f\right )} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, x - 1\right )}\right ) + \frac {1}{32} \, {\left (9 \, d - 4 \, f\right )} \log \left (x^{2} + x + 1\right ) - \frac {1}{32} \, {\left (9 \, d - 4 \, f\right )} \log \left (x^{2} - x + 1\right ) - \frac {7 \, {\left (d - f\right )} x^{7} - 8 \, e x^{6} + 5 \, {\left (d - 2 \, f\right )} x^{5} - 12 \, e x^{4} + 7 \, {\left (d - 2 \, f\right )} x^{3} - 16 \, e x^{2} - {\left (4 \, d + 5 \, f\right )} x - 6 \, e}{24 \, {\left (x^{8} + 2 \, x^{6} + 3 \, x^{4} + 2 \, x^{2} + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^2+e*x+d)/(x^4+x^2+1)^3,x, algorithm="maxima")

[Out]

1/144*sqrt(3)*(13*d - 32*e + 2*f)*arctan(1/3*sqrt(3)*(2*x + 1)) + 1/144*sqrt(3)*(13*d + 32*e + 2*f)*arctan(1/3
*sqrt(3)*(2*x - 1)) + 1/32*(9*d - 4*f)*log(x^2 + x + 1) - 1/32*(9*d - 4*f)*log(x^2 - x + 1) - 1/24*(7*(d - f)*
x^7 - 8*e*x^6 + 5*(d - 2*f)*x^5 - 12*e*x^4 + 7*(d - 2*f)*x^3 - 16*e*x^2 - (4*d + 5*f)*x - 6*e)/(x^8 + 2*x^6 +
3*x^4 + 2*x^2 + 1)

________________________________________________________________________________________

mupad [B]  time = 1.01, size = 249, normalized size = 1.12 \[ \frac {\left (\frac {7\,f}{24}-\frac {7\,d}{24}\right )\,x^7+\frac {e\,x^6}{3}+\left (\frac {5\,f}{12}-\frac {5\,d}{24}\right )\,x^5+\frac {e\,x^4}{2}+\left (\frac {7\,f}{12}-\frac {7\,d}{24}\right )\,x^3+\frac {2\,e\,x^2}{3}+\left (\frac {d}{6}+\frac {5\,f}{24}\right )\,x+\frac {e}{4}}{x^8+2\,x^6+3\,x^4+2\,x^2+1}-\ln \left (x-\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {9\,d}{32}-\frac {f}{8}+\frac {\sqrt {3}\,d\,13{}\mathrm {i}}{288}+\frac {\sqrt {3}\,e\,1{}\mathrm {i}}{9}+\frac {\sqrt {3}\,f\,1{}\mathrm {i}}{144}\right )-\ln \left (x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {f}{8}-\frac {9\,d}{32}+\frac {\sqrt {3}\,d\,13{}\mathrm {i}}{288}-\frac {\sqrt {3}\,e\,1{}\mathrm {i}}{9}+\frac {\sqrt {3}\,f\,1{}\mathrm {i}}{144}\right )+\ln \left (x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {f}{8}-\frac {9\,d}{32}+\frac {\sqrt {3}\,d\,13{}\mathrm {i}}{288}+\frac {\sqrt {3}\,e\,1{}\mathrm {i}}{9}+\frac {\sqrt {3}\,f\,1{}\mathrm {i}}{144}\right )+\ln \left (x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {9\,d}{32}-\frac {f}{8}+\frac {\sqrt {3}\,d\,13{}\mathrm {i}}{288}-\frac {\sqrt {3}\,e\,1{}\mathrm {i}}{9}+\frac {\sqrt {3}\,f\,1{}\mathrm {i}}{144}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x + f*x^2)/(x^2 + x^4 + 1)^3,x)

[Out]

(e/4 - x^5*((5*d)/24 - (5*f)/12) - x^3*((7*d)/24 - (7*f)/12) - x^7*((7*d)/24 - (7*f)/24) + (2*e*x^2)/3 + (e*x^
4)/2 + (e*x^6)/3 + x*(d/6 + (5*f)/24))/(2*x^2 + 3*x^4 + 2*x^6 + x^8 + 1) - log(x - (3^(1/2)*1i)/2 - 1/2)*((9*d
)/32 - f/8 + (3^(1/2)*d*13i)/288 + (3^(1/2)*e*1i)/9 + (3^(1/2)*f*1i)/144) - log(x - (3^(1/2)*1i)/2 + 1/2)*(f/8
 - (9*d)/32 + (3^(1/2)*d*13i)/288 - (3^(1/2)*e*1i)/9 + (3^(1/2)*f*1i)/144) + log(x + (3^(1/2)*1i)/2 - 1/2)*(f/
8 - (9*d)/32 + (3^(1/2)*d*13i)/288 + (3^(1/2)*e*1i)/9 + (3^(1/2)*f*1i)/144) + log(x + (3^(1/2)*1i)/2 + 1/2)*((
9*d)/32 - f/8 + (3^(1/2)*d*13i)/288 - (3^(1/2)*e*1i)/9 + (3^(1/2)*f*1i)/144)

________________________________________________________________________________________

sympy [C]  time = 117.11, size = 4496, normalized size = 20.16 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**2+e*x+d)/(x**4+x**2+1)**3,x)

[Out]

(-9*d/32 + f/8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288)*log(x + (-1025428432*d**5*e - 334752912*d**5*(-9*d/32 + f/
8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288) + 2008961360*d**4*e*f + 1151575920*d**4*f*(-9*d/32 + f/8 - sqrt(3)*I*(1
3*d + 32*e + 2*f)/288) - 431308800*d**3*e**3 - 3143688192*d**3*e**2*(-9*d/32 + f/8 - sqrt(3)*I*(13*d + 32*e +
2*f)/288) - 1598857120*d**3*e*f**2 + 9917005824*d**3*e*(-9*d/32 + f/8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288)**2
- 944300160*d**3*f**2*(-9*d/32 + f/8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288) + 11878244352*d**3*(-9*d/32 + f/8 -
sqrt(3)*I*(13*d + 32*e + 2*f)/288)**3 + 233164800*d**2*e**3*f + 4409634816*d**2*e**2*f*(-9*d/32 + f/8 - sqrt(3
)*I*(13*d + 32*e + 2*f)/288) + 662937520*d**2*e*f**3 - 13004623872*d**2*e*f*(-9*d/32 + f/8 - sqrt(3)*I*(13*d +
 32*e + 2*f)/288)**2 + 231796080*d**2*f**3*(-9*d/32 + f/8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288) - 10089639936*d
**2*f*(-9*d/32 + f/8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288)**3 + 142606336*d*e**5 + 754974720*d*e**4*(-9*d/32 +
f/8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288) - 1843200*d*e**3*f**2 + 3850371072*d*e**3*(-9*d/32 + f/8 - sqrt(3)*I*
(13*d + 32*e + 2*f)/288)**2 - 1926291456*d*e**2*f**2*(-9*d/32 + f/8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288) + 203
84317440*d*e**2*(-9*d/32 + f/8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288)**3 - 146756960*d*e*f**4 + 5813379072*d*e*f
**2*(-9*d/32 + f/8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288)**2 + 12679200*d*f**4*(-9*d/32 + f/8 - sqrt(3)*I*(13*d
+ 32*e + 2*f)/288) + 1116758016*d*f**2*(-9*d/32 + f/8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288)**3 - 79691776*e**5*
f - 188743680*e**4*f*(-9*d/32 + f/8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288) - 7372800*e**3*f**3 - 2151677952*e**3
*f*(-9*d/32 + f/8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288)**2 + 287096832*e**2*f**3*(-9*d/32 + f/8 - sqrt(3)*I*(13
*d + 32*e + 2*f)/288) - 5096079360*e**2*f*(-9*d/32 + f/8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288)**3 + 14093632*e*
f**5 - 859521024*e*f**3*(-9*d/32 + f/8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288)**2 - 7648128*f**5*(-9*d/32 + f/8 -
 sqrt(3)*I*(13*d + 32*e + 2*f)/288) + 453869568*f**3*(-9*d/32 + f/8 - sqrt(3)*I*(13*d + 32*e + 2*f)/288)**3)/(
217696167*d**6 - 301346487*d**5*f - 1217128448*d**4*e**2 + 130506255*d**4*f**2 + 2181281792*d**3*e**2*f - 5619
240*d**3*f**3 - 617611264*d**2*e**4 - 1450149888*d**2*e**2*f**2 - 8036820*d**2*f**4 + 495976448*d*e**4*f + 430
088192*d*e**2*f**3 + 783648*d*f**5 - 114294784*e**4*f**2 - 47771648*e**2*f**4 + 188352*f**6)) + (-9*d/32 + f/8
 + sqrt(3)*I*(13*d + 32*e + 2*f)/288)*log(x + (-1025428432*d**5*e - 334752912*d**5*(-9*d/32 + f/8 + sqrt(3)*I*
(13*d + 32*e + 2*f)/288) + 2008961360*d**4*e*f + 1151575920*d**4*f*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e + 2
*f)/288) - 431308800*d**3*e**3 - 3143688192*d**3*e**2*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/288) - 15
98857120*d**3*e*f**2 + 9917005824*d**3*e*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/288)**2 - 944300160*d*
*3*f**2*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/288) + 11878244352*d**3*(-9*d/32 + f/8 + sqrt(3)*I*(13*
d + 32*e + 2*f)/288)**3 + 233164800*d**2*e**3*f + 4409634816*d**2*e**2*f*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32
*e + 2*f)/288) + 662937520*d**2*e*f**3 - 13004623872*d**2*e*f*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/2
88)**2 + 231796080*d**2*f**3*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/288) - 10089639936*d**2*f*(-9*d/32
 + f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/288)**3 + 142606336*d*e**5 + 754974720*d*e**4*(-9*d/32 + f/8 + sqrt(3)*
I*(13*d + 32*e + 2*f)/288) - 1843200*d*e**3*f**2 + 3850371072*d*e**3*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e +
 2*f)/288)**2 - 1926291456*d*e**2*f**2*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/288) + 20384317440*d*e**
2*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/288)**3 - 146756960*d*e*f**4 + 5813379072*d*e*f**2*(-9*d/32 +
 f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/288)**2 + 12679200*d*f**4*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/
288) + 1116758016*d*f**2*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/288)**3 - 79691776*e**5*f - 188743680*
e**4*f*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/288) - 7372800*e**3*f**3 - 2151677952*e**3*f*(-9*d/32 +
f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/288)**2 + 287096832*e**2*f**3*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e + 2*
f)/288) - 5096079360*e**2*f*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/288)**3 + 14093632*e*f**5 - 8595210
24*e*f**3*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/288)**2 - 7648128*f**5*(-9*d/32 + f/8 + sqrt(3)*I*(13
*d + 32*e + 2*f)/288) + 453869568*f**3*(-9*d/32 + f/8 + sqrt(3)*I*(13*d + 32*e + 2*f)/288)**3)/(217696167*d**6
 - 301346487*d**5*f - 1217128448*d**4*e**2 + 130506255*d**4*f**2 + 2181281792*d**3*e**2*f - 5619240*d**3*f**3
- 617611264*d**2*e**4 - 1450149888*d**2*e**2*f**2 - 8036820*d**2*f**4 + 495976448*d*e**4*f + 430088192*d*e**2*
f**3 + 783648*d*f**5 - 114294784*e**4*f**2 - 47771648*e**2*f**4 + 188352*f**6)) + (9*d/32 - f/8 - sqrt(3)*I*(1
3*d - 32*e + 2*f)/288)*log(x + (-1025428432*d**5*e - 334752912*d**5*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2
*f)/288) + 2008961360*d**4*e*f + 1151575920*d**4*f*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288) - 431308
800*d**3*e**3 - 3143688192*d**3*e**2*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288) - 1598857120*d**3*e*f*
*2 + 9917005824*d**3*e*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288)**2 - 944300160*d**3*f**2*(9*d/32 - f
/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288) + 11878244352*d**3*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288)*
*3 + 233164800*d**2*e**3*f + 4409634816*d**2*e**2*f*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288) + 66293
7520*d**2*e*f**3 - 13004623872*d**2*e*f*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288)**2 + 231796080*d**2
*f**3*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288) - 10089639936*d**2*f*(9*d/32 - f/8 - sqrt(3)*I*(13*d
- 32*e + 2*f)/288)**3 + 142606336*d*e**5 + 754974720*d*e**4*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288)
 - 1843200*d*e**3*f**2 + 3850371072*d*e**3*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288)**2 - 1926291456*
d*e**2*f**2*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288) + 20384317440*d*e**2*(9*d/32 - f/8 - sqrt(3)*I*
(13*d - 32*e + 2*f)/288)**3 - 146756960*d*e*f**4 + 5813379072*d*e*f**2*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e
+ 2*f)/288)**2 + 12679200*d*f**4*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288) + 1116758016*d*f**2*(9*d/3
2 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288)**3 - 79691776*e**5*f - 188743680*e**4*f*(9*d/32 - f/8 - sqrt(3)*I
*(13*d - 32*e + 2*f)/288) - 7372800*e**3*f**3 - 2151677952*e**3*f*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f
)/288)**2 + 287096832*e**2*f**3*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288) - 5096079360*e**2*f*(9*d/32
 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288)**3 + 14093632*e*f**5 - 859521024*e*f**3*(9*d/32 - f/8 - sqrt(3)*I*
(13*d - 32*e + 2*f)/288)**2 - 7648128*f**5*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288) + 453869568*f**3
*(9*d/32 - f/8 - sqrt(3)*I*(13*d - 32*e + 2*f)/288)**3)/(217696167*d**6 - 301346487*d**5*f - 1217128448*d**4*e
**2 + 130506255*d**4*f**2 + 2181281792*d**3*e**2*f - 5619240*d**3*f**3 - 617611264*d**2*e**4 - 1450149888*d**2
*e**2*f**2 - 8036820*d**2*f**4 + 495976448*d*e**4*f + 430088192*d*e**2*f**3 + 783648*d*f**5 - 114294784*e**4*f
**2 - 47771648*e**2*f**4 + 188352*f**6)) + (9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288)*log(x + (-102542
8432*d**5*e - 334752912*d**5*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288) + 2008961360*d**4*e*f + 115157
5920*d**4*f*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288) - 431308800*d**3*e**3 - 3143688192*d**3*e**2*(9
*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288) - 1598857120*d**3*e*f**2 + 9917005824*d**3*e*(9*d/32 - f/8 +
sqrt(3)*I*(13*d - 32*e + 2*f)/288)**2 - 944300160*d**3*f**2*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288)
 + 11878244352*d**3*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288)**3 + 233164800*d**2*e**3*f + 4409634816
*d**2*e**2*f*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288) + 662937520*d**2*e*f**3 - 13004623872*d**2*e*f
*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288)**2 + 231796080*d**2*f**3*(9*d/32 - f/8 + sqrt(3)*I*(13*d -
 32*e + 2*f)/288) - 10089639936*d**2*f*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288)**3 + 142606336*d*e**
5 + 754974720*d*e**4*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288) - 1843200*d*e**3*f**2 + 3850371072*d*e
**3*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288)**2 - 1926291456*d*e**2*f**2*(9*d/32 - f/8 + sqrt(3)*I*(
13*d - 32*e + 2*f)/288) + 20384317440*d*e**2*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288)**3 - 146756960
*d*e*f**4 + 5813379072*d*e*f**2*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288)**2 + 12679200*d*f**4*(9*d/3
2 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288) + 1116758016*d*f**2*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)
/288)**3 - 79691776*e**5*f - 188743680*e**4*f*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288) - 7372800*e**
3*f**3 - 2151677952*e**3*f*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288)**2 + 287096832*e**2*f**3*(9*d/32
 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288) - 5096079360*e**2*f*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/
288)**3 + 14093632*e*f**5 - 859521024*e*f**3*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288)**2 - 7648128*f
**5*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e + 2*f)/288) + 453869568*f**3*(9*d/32 - f/8 + sqrt(3)*I*(13*d - 32*e
 + 2*f)/288)**3)/(217696167*d**6 - 301346487*d**5*f - 1217128448*d**4*e**2 + 130506255*d**4*f**2 + 2181281792*
d**3*e**2*f - 5619240*d**3*f**3 - 617611264*d**2*e**4 - 1450149888*d**2*e**2*f**2 - 8036820*d**2*f**4 + 495976
448*d*e**4*f + 430088192*d*e**2*f**3 + 783648*d*f**5 - 114294784*e**4*f**2 - 47771648*e**2*f**4 + 188352*f**6)
) + (8*e*x**6 + 12*e*x**4 + 16*e*x**2 + 6*e + x**7*(-7*d + 7*f) + x**5*(-5*d + 10*f) + x**3*(-7*d + 14*f) + x*
(4*d + 5*f))/(24*x**8 + 48*x**6 + 72*x**4 + 48*x**2 + 24)

________________________________________________________________________________________